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Notes - Unit 4 
 

UNSIGNED INTEGER NUMBERS 
 

DECIMAL NUMBER SYSTEM 

 
 A decimal digit can take values from 0 to 9:  
 Digit-by-digit representation of a positive integer number (powers of 10): 
 
 
  
 
 
 
 
 
 
 
 
 

POSITIONAL NUMBER REPRESENTATION 
 Let’s consider the numbers from 0 to 999. We represent these numbers with 3 digits (each digit being a number between 0 

and 9). We show a 3-digit number using the positional number representation: 
 
 
 
 
 
 
 
 
 The positional number representation allows us to express the decimal value using powers of ten: 𝑑2 × 102 + 𝑑1 × 101 +

𝑑0 × 100 . Example: 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Exercise: Write down the 3-digit and the powers of ten representations for the following numbers: 

 
Decimal Number 3-digit representation 𝑑2 × 102 + 𝑑1 × 101 + 𝑑0 × 100 

5 
  

254 
  

100 
  

99 
  

  

Decimal

Number

3-digit representation

d2d1d0

0

9

11

25

90

128

255

000

009

011

025

090

128

255

Powers of 10:

d2 10
2 + d1 10

1 + d0 10
0

0 102 + 0 101 + 0 100

0 102 + 0 101 + 9 100

0 102 + 1 101 + 1 100

0 102 + 2 101 + 5 100

0 102 + 9 101 + 0 100

1 102 + 2 101 + 8 100

2 102 + 5 101 + 5 100

DIGIT

0 1 2 3 4 5 6 7 8 9

9 thousands, 3 hundreds, 7 tens, and 2 units

9 3 7 2

units

tenshundreds

thousands

Number: 9372

103 102 101 100

9372 = 9×103 +   3×102 +  7×101 +   2×100

d2 d1 d0

Third Digit Second Digit First Digit

2 0 9

Third Digit Second Digit First Digit

MATHEMATICAL REPRESENTATION

3-digit

EXAMPLE
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General Case: 
 Positional number representation for an integer positive number with 𝑛 digits:   

Decimal Value:  

𝐷 = ∑ 𝑑𝑖 × 10𝑖

𝑖=𝑛−1

𝑖=0

= 𝑑𝑛−1 × 10𝑛−1 + 𝑑𝑛−2 × 10𝑛−2 + ⋯ + 𝑑1 × 101 + 𝑑0 × 100 

 

 Example: 1098324 (7 digits). 0123456 1041021031081091001011098324   

   203476 (6 digits). 012345 106107104103100102203476   

 
Maximum value: 
 The table presents the maximum attainable value for a given number of digits. What pattern do you find? Can you complete 

it for the highlighted cases (4 and 6)? 
 

Number of digits Maximum value Range 

1 9 = 101-1 0  9        0  101-1 

2 99 = 102-1 0  99       0  102-1 

3 999 = 103-1 0  999      0  103-1 

4   

5 99999 = 105-1 0  99999    0  105-1 

6   

…   

n 999…999 = 10n-1 0  999…999  0  10n-1 

 

 Maximum value for a number with ‘n’ digits: Based on the table, the maximum decimal value for a number with ‘n’ 
digits is given by: 
 
 
 
 

 With ‘n’ digits, we can represent 10n positive integer numbers from 0 to 10n-1. 

 
 With 7 digits, what is the range (starting from 0) of positive numbers that we can represent? How many different numbers 

can we represent? 
 
 

BINARY NUMBER SYSTEM 

 
 We are used to the decimal number system. However, there exist other number 

systems: octal, hexadecimal, vigesimal, binary, etc. In particular, binary 
numbers are very practical as they are used by digital computers. For binary 
numbers, the counterpart of the decimal digit (that can take values from 0 to 9) 
is the binary digit, or bit (that can take the value of 0 or 1). 

 

 Bit: Unit of information that a computer uses to process and retrieve data. It can also be used as a Boolean variable (see 
Unit 1). 

 
 Binary number: This is represented by a string of bits using the positional number representation: 𝑏𝑛−1𝑏𝑛−2 … 𝑏1𝑏0 

 
 Converting a binary number into a decimal number: The following figure depicts two cases: 2-bit numbers and 3-bit 

numbers. Note that the positional representation with powers of two let us obtain the decimal value (integer positive) of the 
binary number. 

  

dn-1dn-2 ... d1d0

D = 999...999 = 9 10n-1 + 9 10n-2 + ... + 9 101 + 9 100 = 10n-1

n digits

DIGIT

0 1 2 3 4 5 6 7 8 9 0  1

BIT
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General case: 

 Positional number representation for a binary number with ‘n’ bits:  

 
 
 
 
 

The binary number can be converted to a positive decimal number by using the following formula: 

𝐷 = ∑ 𝑏𝑖 × 2𝑖

𝑖=𝑛−1

𝑖=0

= 𝑏𝑛−1 × 2𝑛−1 + 𝑏𝑛−2 × 2𝑛−2 + ⋯ + 𝑏1 × 21 + 𝑏0 × 20 

 To avoid confusion, we usually write a binary number and attach a suffix ‘2’:  (𝑏𝑛−1𝑏𝑛−2 … 𝑏1𝑏0)2 
 
 Example: 6 𝑏𝑖𝑡𝑠: (101011)2 ≡ 𝐷 = 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 43 

4 𝑏𝑖𝑡𝑠: (1011)2 ≡ 𝐷 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 11 

 
 Maximum value for a given number of bits. Complete the tables for the highlighted cases (4 and 6): 
 

Number of bits Maximum value Range 

1 12  21-1 0  12        0  21-1 

2 112  22-1 0  112       0  22-1 

3 1112  23-1 0  1112      0  23-1 

4   

5 111112  25-1 0  111112    0  25-1 

6   

…   

n 111…1112  2n-1 0  111…1112  0  2n-1 

 

 Maximum value for ‘n’ bits: The maximum binary number is given by an n-bit string of 1’s: 111…111. Then, the maximum 
decimal numbers is given by:  
 
 
 
 

 With ‘n’ bits, we can represent 2n positive integer numbers from 0 to 2n-1. 

  

D = 111...111 = 1 2n-1 + 1 2n-2 + ... + 1 21 + 1 20 = 2n-1

n bits

bn-1bn-2 ... b1b0

Least significant 

(rightmost) bit

Most significant 

(leftmost) bit

b2 b1 b0

Third Bit Second Bit First Bit

MATHEMATICAL REPRESENTATION

3-bit

Decimal

Number

Binary number

b2b1b0

0

1

2

3

4

5

6

7

000

001

010

011

100

101

110

111

Powers of 2:

b2 2
2 + b1 2

1 + b0 2
0

0 22 + 0 21 + 0 20

0 22 + 0 21 + 1 20

0 22 + 1 21 + 0 20

0 22 + 1 21 + 1 20

1 22 + 0 21 + 0 20

1 22 + 0 21 + 1 20

1 22 + 1 21 + 0 20

1 22 + 1 21 + 1 20

b1 b0

Second Bit First Bit

MATHEMATICAL REPRESENTATION

2-bit

Decimal

Number

Binary number

b1b0

0

1

2

3

00

01

10

11

Powers of 2:

b1 2
1 + b0 2

0

0 21 + 0 20

0 21 + 1 20

1 21 + 0 20

1 21 + 1 20
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b7b6b5b4b3b2b1b0

Least significant 

(rightmost) bit

Most significant 

(leftmost) bit

 The case n=8 bits is of particular interest, as a string of 8 bits is called a byte. For 8-bit numbers, we have 256 numbers in 
the range 0 to 28-1  0 to 255. 

 
 
 
 
 
 The table shows some examples: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise: Convert the following binary numbers (positive integers) to their decimal values: 

8-bit representation 𝑏7 × 27 + 𝑏6 × 26 + 𝑏5 × 25 + 𝑏4 × 24 + 𝑏3 × 23 + 𝑏2 × 22 + 𝑏1 × 21 + 𝑏0 × 20 
Decimal 
Number

 

00000001 
  

00001001 
  

10000101 
  

10000111 
  

11110011 
  

 
CONVERSION OF A NUMBER IN ANY BASE TO THE DECIMAL SYSTEM 
 To convert a number of base 'r' (r = 2, 3,4 ,…) to decimal, we use the following formula: 

Number in base 'r': (𝑟𝑛−1𝑟𝑛−2 … 𝑟1𝑟0)𝑟 

Conversion to decimal: 

𝐷 = ∑ 𝑟𝑖 × 𝑟𝑖

𝑖=𝑛−1

𝑖=0

= 𝑟𝑛−1 × 𝑟𝑛−1 + 𝑟𝑛−2 × 𝑟𝑛−2 + ⋯ + 𝑟1 × 𝑟1 + 𝑟0 × 𝑟0 

Also, the maximum decimal value for a number in base 'r' with 'n' digits is: 
𝐷 = 𝑟𝑟𝑟 … 𝑟𝑟𝑟 = 𝑟 × 𝑟𝑛−1 + 𝑟𝑛−2 × 𝑟𝑛−2 + ⋯ + 𝑟 × 𝑟1 + 𝑟 × 𝑟0 = 𝑟𝑛 − 1 

 
 Example: Base-8: 

Number of digits Maximum value Range 

1 78  81-1 0  78        0  81-1 

2 778  82-1 0  778       0  82-1 

3 7778  83-1 0  7778      0  83-1 

…   

n 777…7778  8n-1 0  777…7778  0  8n-1 

 
Examples:  
 (50632)8: Number in base 8 (octal system) 

Number of digits: n = 5 
Conversion to decimal: 𝐷 = 5 × 84 + 0 × 83 + 6 × 82 + 3 × 81 + 2 × 80 = 20890 

 (3102)4: Number in base 4 (quaternary system) 

Number of digits: n = 4 
Conversion to decimal: 𝐷 = 3 × 43 + 1 × 42 + 0 × 41 + 2 × 40 = 210  

Decimal

Number

8-bit format

b7b6b5b4b3b2d1d0

0

9

11

25

90

128

255

00000000

00001001

00001011

00011001

01011010

10000000

11111111

b7 2
7 + b6 2

6 + b5 2
5 + b4 2

4 + b3 2
3 + b2 2

2 + b1 2
1 + b0 2

0

0 27 +  0 26 + 0 25 +  0 24 + 0 23 + 0 22 +  0 21 + 0 20

0 27 +  0 26 + 0 25 +  0 24 + 1 23 + 0 22 +  0 21 + 1 20

0 27 +  0 26 + 0 25 +  0 24 + 1 23 + 0 22 +  1 21 + 1 20

0 27 +  0 26 + 0 25 +  1 24 + 1 23 + 0 22 +  0 21 + 1 20

0 27 +  1 26 + 0 25 +  1 24 + 1 23 + 0 22 +  1 21 + 0 20

1 27 +  0 26 + 0 25 +  0 24 + 0 23 + 0 22 +  0 21 + 0 20

1 27 +  1 26 + 1 25 +  1 24 + 1 23 + 1 22 +  1 21 + 1 20
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CONVERSION OF DECIMAL (INTEGER POSITIVE) TO BINARY NUMBERS 

 Examples: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Note that some numbers require fewer bits than others. If we want to use a specific bit representation, e.g., 8-bit, we just 
need to append zeros to the left until the 8 bits are completed. For example: 
   1101002  001101002 (8-bit number) 

  11110112  011110112 (8-bit number) 

 
 Actually, you can use this method to convert a decimal 

number into any other base. For example, if you want to 
convert it into a base-8 number, just divide by 8 and group 
the remainders. 

 
 Example: Converting a decimal number to base-8:  
 
  

52

52

Number in

base 10

Number in

base 2

????2

0
26

2

0

1

0

1

1

1101002

stop here!

Number in

base 10

Number in

base 2

????2

26

13

2

13

6

2

6

3

2

3

1

2

1

0

2

Remainder

123
1

61

2

1

0

1

1

1

11110112

stop here!

61

30

2

30

15

2

15

7

2

7

3

2

3

1

2

Remainder

1

0

2

123

1

83

83

Number in

base 10

Number in

base 8

????8

3
10

8

2

1

1238

stop here!

10

1

8

1

0

8

Remainder
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Exercise: 
 Convert the following two decimal numbers to binary numbers. Fill in the blanks in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Now, convert the following decimal numbers to binary numbers. The final binary number must have 8 bits (append zeros to 
the left to complete). 

 

Decimal number 
Binary number with 8 bits 

b7b6b5b4b3b2b1b0 

40 
 
 

255 
 
 

111 
 
 

126 
 
 

9 
 
 

 

  

63

Number in

base 10

Number in

base 2

????2 97

Number in

base 10

Number in

base 2

????2

632

2

2

2

2

2

Remainder

972

2

2

2

2

2

Remainder

2



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-378: Computer Hardware Design  Winter 2016 

 

 

7 Instructor: Daniel Llamocca 

HEXADECIMAL NUMBER SYSTEM 

 This is a very useful system as it is a short-hand notation for binary numbers 
 In the decimal number system, a digit can take a value from 0 to 9.  
 A hexadecimal digit is also called a nibble. A hexadecimal digit can take a value from 0 to 15. To avoid confusion, the 

numbers 10 to 15 are represented by letter (A-F): 
 
 
 
 
 
 
 
 
 
 

 The following figure shows a 2-digit hexadecimal number. Note that the positional representation with powers of 16 let us 
obtain the decimal value (integer positive) of the hexadecimal number. This is the same as converting a hexadecimal 
number into a decimal number. 

 
 
 
 
 
 
 
 
 
 
 
 

 Note that when we use the letters A-F in the multiplications inside the powers of 16 representation (e.g., A161 +7160), 

we need to replace the hexadecimal symbol by its decimal value. 
A = 10, B = 11, C = 12, D = 13, E = 14, F = 15 

 

For example: A161  (10)161. 

 

EXERCISE: Convert the following hexadecimal numbers (positive integers) to their decimal values: 
 

2-hex. digit 

representation 
h1161 +h0160 Decimal Number

 

AB 
  

CE 
  

05 
  

70 
  

F0 
  

E9 
  

 

General case: 
 Positional number representation for a hexadecimal number with ‘n’ nibbles (hexadecimal digits):  
 
 
 
 
  

hn-1hn-2 ... h1h0

Least significant 

(rightmost) nibble

Most significant 

(leftmost) nibble

Hexadecimal digits

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F

Decimal digits

h1 h0

Second Digit First Digit

MATHEMATICAL REPRESENTATION

2-hexadecimal digits

Hex. number

h1h0

90

16

8

251

62

167

5A

10

08

FB

3E

A7

Powers of 16:

h1 16
1 + h0 16

0

5 161 + A 160

1 161 + 0 160

0 161 + 8 160

F 161 + B 160

3 161 + E 160

A 161 + 7 160

Decimal

Value
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 To convert a hexadecimal number into a decimal, we apply the following formula: 
Decimal Value (integer positive):

  

𝐷 = ∑ ℎ𝑖 × 16𝑖

𝑖=𝑛−1

𝑖=0

= ℎ𝑛−1 × 16𝑛−1 + ℎ𝑛−2 × 16𝑛−2 + ⋯ + ℎ1 × 161 + ℎ0 × 160 

 To avoid confusion, it is sometimes customary to append the prefix ‘0x’ to a hexadecimal number: 
 
 

 Examples: FD0A90: 0FD0A90  F165 + D164 + 0163 + A162 + 9161 + 0160 

  0B871C: 00B871C  0165 + B164 + 8163 + 7162 + 1161 + C160 

 
 The table presents the maximum attainable value for the given number of nibbles (hexadecimal digits). What pattern do you 

find? Can you complete it for the highlighted cases (4 and 6)? 
  

Number of nibbles Maximum value Range  

1 F  161-1 0  F          0  161-1 

2 FF  162-1 0  FF         0  162-1 

3 FFF  163-1 0  FFF        0  163-1 

4   

5 FFFFF  165-1 0  111112     0  165-1 

6   

…   

n FFF…FFF  16n-1 0  FFF…FFF   0  16n-1 

 

 Maximum value for ‘n’ nibbles: The maximum decimal value with ‘n’ nibbles is given by: 
 
 
 
 

 

 With ‘n’ nibbles, we can represent positive integer numbers from 0 to 16n-1. (16n numbers) 

 
UNITS OF INFORMATION 
 

Nibble Byte KB MB GB TB 

4 bits 8 bits 210 bytes 220 bytes 230 bytes 240 bytes 

 
 Note that the nibble (4 bits) is one hexadecimal digit. Also, one byte (8 bits) is represented by two hexadecimal digits.  

 While KB, MB, GB, TB (and so on) should be powers of 10 in the International System, it is customary in digital jargon to 
use powers of 2 to represent them.  

 In microprocessor systems, memory size is usually a power of 2 due to the fact that the maximum memory size is determined 
by the number of addresses the address bus can handle (which is a power of 2). As a result, it is very useful to use the 
definition provided here for KB, MB, GB, TB (and so on).  

 Digital computers usually represent numbers utilizing a number of bits that is a multiple of 8. The simple hexadecimal to 
binary conversion may account for this fact as we can quickly convert a string of bits that is a multiple of 8 into a string of 
hexadecimals digits.  

 The size of the data bus in a processor represents the computing capacity of a processor, as the data bus size is the number 
of bits the processor can operate in one operation (e.g.: 8-bit, 16-bit, 32-bit processor). This is also usually expressed as a 
number of bits that is a multiple of 8.  
 

RELATIONSHIP BETWEEN HEXADECIMAL AND BINARY NUMBERS 
 Conversions between hexadecimal and binary systems are very common when dealing with digital computers. In this activity, 

we will learn how these 2 systems are related and how easy it is to convert between one and the other. 
 Hexadecimal to binary: We already know how to convert a hexadecimal number into a decimal number. We can then can 

convert the decimal number into a binary number (using successive divisions). 
 Binary to hexadecimal: We can first convert the binary number to a decimal number. Then, using an algorithm similar to 

the one that converts decimals into binary, we can convert our decimal number into a hexadecimal number.  

0hn-1hn-2...h1h0

D = FFF...FFF =  F 16n-1 +  F 16n-2 + ... +  F 161 +  F 160

15 16n-1 + 15 16n-2 + ... + 15 161 + 15 160 = 16n-1
n nibbles
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SIMPLE METHOD TO CONVERT HEXADECIMAL TO BINARY NUMBERS AND VICEVERSA 
 
 The previous two conversion processes are too tedious. Fortunately, hexadecimal numbers have an interesting property 

that allows quick conversion of binary numbers to hexadecimals and viceversa. 
 
 Binary to hexadecimal: We group the binary numbers in groups of 4 (starting from the rightmost bit). If the last group 

of bits does not have four bits, we append zeros to the left. Then, we independently convert each group of 4 bits to its 
decimal value. 
Notice that 4 bits can only take decimal values between 0 and 24-1  0 to 15, hence 4 bits represent only one hexadecimal 

digit. In other words, for each group of 4 bits, there are only 16 possible hexadecimal digits to pick from. The figure below 
shows an example. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Exercise: Group the following binary numbers in groups of 4 bits and obtain the hexadecimal representation. Use the table 
in the previous figure to pick the correspondent hexadecimal digit for each group of 4 bits. 

 

Binary number Hexadecimal number 

1101111 
 
 

101 
 
 

1110 
 
 

1100011 
 
 

11111110 
 
 

100001 
 
 

 
 Hexadecimal to binary: It is basically the inverse of the process of converting a binary into a hexadecimal numbers. We 

pick each hexadecimal digit and convert it (always using 4 bits) to its 4-bit binary representation. The binary number is the 
concatenation of all resulting group of 4 bits. 

 
 
  

Binary: 10111012 0101 1101
0000    0    0

0001    1    1

0010    2    2

0011    3    3

0100    4    4

0101    5    5

0110    6    6

0111    7    7

1000    8    8

1001    9    9

1010   10    A

1011   11    B

1100   12    C

1101   13    D

1110   14    E

1111   15    F

binary  dec  hex

5 13decimal:

5 Dhexadecimal:

Then: 010111012 = 0x5D

010111012 = 1 26 + 1 24 + 1 23 + 1 22 + 1 20 = 93

0x5D = 5 161 + D 160 = 93

Verification:

FA

1111  1010

C1

1100  0001

DO NOT discard these zeros
when concatening!

0xFA = 111110102
0xC1 = 110000012
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Exercise: 
 Convert these hexadecimal numbers to binary. Verify it by converting both the binary and hexadecimal number (they should 

match). 
 

Hexadecimal 

number 
Binary number Decimal value 

A10 
  

 

891 
  

 

43 
  

 

A2 
  

 

FACE 
  

 

 

 The reason hexadecimal numbers are popular is because hexadecimal numbers provide a short-hand notation for binary 
numbers. 

 
OCTAL NUMBERS 
 An octal digit can takes between 0 and 7. This is another common number system in computers is base-8 (octal). The 

conversion between base-8 and base-2 resembles that of converting between base-16 and base-2. Here, we group binary 
numbers in 3-bit groups:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Binary: 10111012 001 011 101
000    0    0

001    1    1

010    2    2

011    3    3

100    4    4

101    5    5

110    6    6

111    7    7

binary  dec  oct

1 3
octal:

Then: 010111012 = 1358

010111012 = 1 26 + 1 24 + 1 23 + 1 22 + 1 20 = 93

1358 = 1 82 + 3 81 + 5 80 = 93

Verification:

758

111  101

318

011 001

DO NOT discard these zeros
when concatening!

758 = 1111012
318 = 0110012

5

BINARY TO OCTAL

OCTAL TO BINARY
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APPLICATIONS OF BINARY AND HEXADECIMAL REPRESENTATIONS 
 
INTERNET PROTOCOL ADDRESS (IP ADDRESS): 
 
 Hexadecimal numbers represent a compact way of representing binary numbers. The IP address is defined as a 32-bit 

number, but it is displayed as a concatenation of four decimal values separated by a dot (e.g., 129.26.53.76). 
 The following figure shows how a 32-bit IP address expressed as a binary number is transformed into the standard IP 

address notation. 
 
 
 
 
 
 
 
 
 
 

 
 The 32-bit IP address expressed as binary number is very difficult to read. So, we first convert the 32-bit binary number to 

a hexadecimal number. 
 The IP address expressed as a hexadecimal (0x811A354C) is a compact representation of a 32-bit IP address. This should 

suffice. However, it was decided to represent the IP address in a 'human-readable' notation. In this notation, we grab pairs 
of hexadecimal numbers and convert each of them individually to decimal numbers. Then we concatenate all the values and 
separate them by a dot. 

 Important: Note that the IP address notation (decimal numbers) is NOT the decimal value of the binary number. It is 
rather a series of four decimal values, where each decimal value is obtained by independently converting each two 
hexadecimal digits to its decimal value. 

 
 Given that each decimal number in the IP address can be represented by 2 hexadecimal digits (or 8 bits), what is the 

range (min. value, max. value) of each decimal number in the IP address? 
With 8 bits, we can represent 28 = 256 numbers from 0 to 255. 

 
 An IP address represents a unique device connected to the Internet. Given that the IP address has 32 bits (or 8 

hexadecimal digits), the how many numbers can be represented (i.e., how many devices can connect to the Internet)? 
232 = 4294967296 devices. 

 
 The number of devices that can be connected to the Internet is huge, but considering the number of Internet-capable 

devices that exists in the entire world, it is becoming clear that 32 bits is not going to be enough. That is why the Internet 
Protocol is being currently extended to a new version (IPv6) that uses 128 bits for the addresses. With 128 bits, how 
many Internet-capable devices can be connected to the Internet? 

2128 ≈ 3.4 × 1038 devices 

 
REPRESENTING GRAYSCALE PIXELS 
A grayscale pixel is commonly represented with 8 bits. So, a grayscale pixel value varies between 0 and 255, 0 being the darkest 
(black) and 255 being the brightest (white). Any value in between represents a shade of gray. 
 
 
 
 
 
MEMORY ADDRESSES 
The address bus size in processors is usually determined by the 
number of memory positions it can address. For example, if we have 
a microprocessor with an address bus of 16 bits, we can handle up 
to 216 addresses. If the memory content is one byte wide, then the 

processor can handle up to 216𝑏𝑦𝑡𝑒𝑠 = 64𝐾𝐵. 

 
Here, we use 16 bits per address, or 4 nibbles. The lowest address 
(in hex) is 0x0000 and highest address (in hex) is 0xFFFF.  

 
  

0 255

1000 0001 0001 1010 0011 0101 0100 1100

8    1 1    A    3    5    4    C

IP address notation: 129.26.53.76

129        26        53        76

IP address (binary): 10000001000110100011010101001100

Conversion to

hexadecimal:

IP address (hex): 0x811A354C

Grab pairs of

hexadecimal numbers

and convert each of

them to decimal.

0000 0000 0000 0000: 0x0000

0000 0000 0000 0001: 0x0001

...

...

...

1111 1111 1111 1111: 0xFFFF

Address

...

8 bits
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Examples: 

 A microprocessor can only handle memory addresses from 0x0000 to 0x7FFF. What is the address bus size? If each 

memory position is one byte wide, what is the maximum size (in bytes) of the memory that we can connect? 
 

We want to cover all the cases from 0x0000 to 0x7FFF: 

 

The range from 0x0000 to 0x7FFF is akin to all possible cases 

with 15 bits. Thus, the address bus size is 15 bits. 
 
We can handle 215𝑏𝑦𝑡𝑒𝑠 = 32𝐾𝐵 of memory. 

 
 

 A microprocessor can only handle memory addresses from 0x0000 to 0x3FFF. What is the address bus size? If each 

memory position is one byte wide, what is the maximum size (in bytes) of the memory that we can connect? 
 

We want to cover all the cases from 0x0000 to 0x3FFF:  

 
The range from 0x0000 to 0x3FFF is akin to all possible cases 
with 14 bits. Thus, the address bus size is 14 bits. 
 
We can handle 214𝑏𝑦𝑡𝑒𝑠 = 16𝐾𝐵 of memory. 

 
 
 A microprocessor has a 24-bit address line. We connect a memory chip to the microprocessor. The memory chip addresses 

are assigned the range 0x800000 to 0xBFFFFF. What is the minimum number of bits required to represent addresses in 

that individual memory chip? If each memory position is one byte wide, what is the memory size (in bytes)? 
 

By looking at the binary numbers from 

0x80000 to 0xBFFFFF, we notice that the 

addresses in that range require 24 bits. But all 
those addresses share the same first two MSBs: 
10. Thus, if we were to use only that memory 

chip, we do not need those 2 bits, and we only 
need 22 bits. 

 
We can handle 222𝑏𝑦𝑡𝑒𝑠 = 4𝑀𝐵 of memory. 

 
 A memory has a size of 512KB, where each memory content is 8-bits wide. How many bits do we need to address the 

contents of this memory? 
 

Recall that: 512𝐾𝐵 = 219𝑏𝑦𝑡𝑒𝑠. So we need 19 bits to address the contents of this memory. 

In general, for a memory with 𝑁 address positions, the number of bits to address those position is given by: ⌈log2 𝑁⌉ 
 

 A 20-bit address line in a microprocessor with an 8-bit 
data bus handles 1 MB (220 𝑏𝑦𝑡𝑒𝑠) of data. We want to 

connect four 256 KB memory chips to the 
microprocessor. Provide the address ranges that each 
memory device will occupy.  

 
For a 20-bit address: we have 5 hexadecimal digits that 

go from 0x00000 to 0xFFFFF. 

 
We need to divide the 220 memory positions into 4 

groups, each with 218 memory positions. Each group will 

correspond to the memory positions of one of the 256KB 
memory chips. Note how at each group, the 2 MSBs are 
the same. 
 
* Each memory chip can handle 256KB of memory.  
256𝐾𝐵 = 218𝑏𝑦𝑡𝑒𝑠. Thus, each memory chip only 

requires 18 bits. 
  

1000 0000 0000 0000 0000 0000: 0x800000

1000 0000 0000 0000 0000 0001: 0x800001

...

...

...

1011 1111 1111 1111 1111 1111: 0xBFFFFF

Address

...

8 bits

256KB

2

Address 8 bits

0000 0000 0000 0000 0000: 0x00000

0000 0000 0000 0000 0001: 0x00001

...                      ...

0011 1111 1111 1111 1111: 0x3FFFF

0100 0000 0000 0000 0000: 0x40000

0100 0000 0000 0000 0001: 0x40001

...                      ...

0111 1111 1111 1111 1111: 0x7FFFF

1000 0000 0000 0000 0000: 0x80000

1000 0000 0000 0000 0001: 0x80001

...                      ...

1011 1111 1111 1111 1111: 0xBFFFF

1100 0000 0000 0000 0000: 0xC0000

1100 0000 0000 0000 0001: 0xC0001

...                      ...

1111 1111 1111 1111 1111: 0xFFFFF

256KB

1

256KB

3

256KB

4

0000 0000 0000 0000: 0x0000

0000 0000 0000 0001: 0x0001

...

...

...

0111 1111 1111 1111: 0x7FFF

Address

...
8 bits

0000 0000 0000 0000: 0x0000

0000 0000 0000 0001: 0x0001

...

...

...

0011 1111 1111 1111: 0x3FFF

Address

...

8 bits
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UNSIGNED NUMBERS - ADDITION 

 
 In the example, we add two 8-bit numbers using binary 

representation and hexadecimal representation (this is a 
short-hand notation). Note that every summation of two 
digits (binary or hexadecimal) generates a carry when 
the summation requires more than one digit. Also, note 
that c0 is the carry in of the summation. c0 is usually zero.  

 The last carry (c8 when n=8) is the carry out of the 
summation. If it is zero, it means that the summation 
can be represented with 8 bits. If it is one, it means that 
the summation requires more than 8 bits (in fact 9 bits); 
this is called an overflow. In the example, we add two 
numbers and overflow occurs: an extra bit (in red) is 
required to correctly represent the summation. 

 
DIGITAL CIRCUIT 
 1-bit Addition:  

 Addition of a bit with carry in: The circuit that performs this operation is called Half Adder (HA). 
 
 
 
 
 
 
 
 
 
 
 

 Addition of a bit with carry in: The circuit that performs this operation is called Full Adder (FA). 
 
 
 
 
 
 
 
 n-bit Addition:  

The figure on the right shows a 5-bit addition. Using the truth table 
method, we would need 11 inputs and 6 outputs. This is not practical! 
Instead, it is better to build a cascade of Full Adders.  
 
For an n-bit addition, the circuit will be: 
 
 
 

 
 

 

  

0x3F = 0 0 1 1 1 1 1 1 +

0xB2 = 1 0 1 1 0 0 1 0

0xF1 = 1 1 1 1 0 0 0 1

c 8
=0

c 7
=0

c 6
=1

c 5
=1

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0

3 F +

B 2

F 1

c 2
=0

c 1
=1

c 0
=0

0x3F =  0 0 1 1 1 1 1 1 +

0xC2 =  1 1 0 0 0 0 1 0

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0

3 F +

C 2

c 2
=1

c 1
=1

c 0
=0

1 0 0 0 0 0 0 0 1 1 0 1

x +

y

co s

ci

FA

x

y

ci

s

co

HA
x

y

s

c
FA

x

y

0

s

co

carry out sum

x +

y

c scarry out sum

0 +

0

0 0

0 +

1

0 1

1 +

0

0 1

1 +

1

1 0

x y

0 0

0 1

1 0

1 1

c s

0 0

0 1

0 1

1 0

x

y

c

s

HA
x

y

s

c

15:  0 1 1 1 1 +

10:  0 1 0 1 0

25:  1 1 0 0 1

x4x3x2x1x0 +

y4y3y2y1y0

s4s3s2s1s0

c 5
=

0
c 4

=
1

c 3
=

1
c 2

=
1

c 1
=

0
c 0

=
0

cincout

cn-1
FA

x0 y0

c0

s0

FA

x1 y1

c1

s1

FA

x2 y2

c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...cout
cin

0 1xi yi ci ci+1 si

0  0  0   0  0

0  0  1   0  1

0  1  0   0  1

0  1  1   1  0

1  0  0   0  1

1  0  1   1  0

1  1  0   1  0

1  1  1   1  1

1 0

ci

xiyi

0

1

00 01

0 1

1 0

11 10 si = xiyici + xiyici + xiyici + xiyici

si = (xiyi)ci + (xiyi)ci

si = xiyici

0 0

0 1

ci

xiyi

0

1

00 01

1 0

1 1

11 10

ci+1 = xiyi + xici + yici

xn-1xn-2...x1x0 +

yn-1yn-2...y1y0

sn-1sn-2...s1s0

cincout

Full Adder Design
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ARITHMETIC OVERFLOW: 
 Suppose we have only 4 bits to represent binary numbers: 

 
 
 
 
 Overflow occurs when an arithmetic operation require more bits than the bits we are using to represent our numbers. For 4 

bits, the range is 0 to 15. If the summation is greater than 15, then there is overflow. 
 For 𝑛 bits, overflow occurs when the sum is greater than 2𝑛 − 1. Also, for unsigned numbers: overflow bit = cout.  

 
 
 
 
 
 
 
 
 To avoid overflow in addition operation, a common technique is to sign-extend the two summands. 

For example, if the two summands are 4-bits wide, then we add one more bit. So, we use 5 bits to 
represent our numbers. In the case of unsigned numbers, sign-extend amounts to zero-extend. 

 In general, if the two summands are n-bits wide, the result will have at most 𝑛 + 1 bits. 

 
UNSIGNED NUMBERS - SUBTRACTION 

 
 In the example, we subtract two 8-bit numbers using 

the binary and hexadecimal (this is a short-hand 
notation)  representations. A subtraction of two digits 
(binary or hexadecimal) generates a borrow when the 
difference is negative. So, we borrow 1 from the next 
digit so that the difference is positive. Recall that a 
borrow in a subtraction of two digits is an extra 1 that 
we need to subtract. Also, note that b0 is the borrow in 
of the summation. This is usually zero. 

 The last borrow (b8 when n=8) is the borrow out of the 
subtraction. If it is zero, it means that the difference is 
positive and can be represented with 8 bits. If it is one, 
it means that the difference is negative and we need to 
borrow 1 from the next digit. In the example, we 
subtract two 8-bit numbers, the result we have borrows 
1 from the next digit.  

 
 We can build an n-bit subtractor for unsigned numbers using Full Subtractor circuits. In practice, subtraction is better 

performed in the 2’s complement representation (for signed numbers). 

   

cn-1
FA

x0 y0

c0

s0

FA

x1 y1

c1

s1

FA

x2 y2

c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...

overflow=cout

cin

01011 +

00110

10001

cout=0

0x3A = 0 0 1 1 1 0 1 0 -

0x2F = 0 0 1 0 1 1 1 1

0x0B = 0 0 0 0 1 0 1 1

b
8
=0

b
7
=0

b
6
=0

b
5
=0

b
4
=1

b
3
=1

b
2
=1

b
1
=1

b
0
=0

3 A -

2 F

0 B

c 2
=0

c 1
=1

c 0
=0

0x3A = 0 0 1 1 1 0 1 0 -

0x75 = 0 1 1 1 0 1 0 1

b
8
=1

b
7
=1

b
6
=0

b
5
=0

b
4
=0

b
3
=1

b
2
=0

b
1
=1

b
0
=0

3 A -

7 5

b
2
=1

b
1
=0

b
0
=0

0xC5 = 1 1 0 0 0 1 0 1 C 5

0101 +

1001

1110

cout=0
1011 +

0110

10001

cout=1

 OVERFLOW!!!

bn-1
FS

x0 y0

b0

d0

FS

x1 y1

b1

d1

FS

x2 y2

b2

d2

b3
FS

xn-1 yn-1

dn-1

bn ...bout
bin

0 1xi yi bi bi+1 di

0  0  0   0  0

0  0  1   1  1

0  1  0   1  1

0  1  1   1  0

1  0  0   0  1

1  0  1   0  0

1  1  0   0  0

1  1  1   1  1

1 0

bi

xiyi

0

1

00 01

0 1

1 0

11 10 di = xiyibi + xiyibi + xiyibi + xiyibi

di = (xiyi)bi + (xiyi)bi

di = xiyibi

0 1

1 1

bi

xiyi

0

1

00 01

0 0

1 0

11 10

bi+1 = xiyi + xibi + yibi

xn-1xn-2...x1x0 -

yn-1yn-2...y1y0

dn-1dn-2...d1d0

binbout

Full Subtractor Design
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SIGNED INTEGER NUMBERS 
 For an 𝑛-bit number 𝑏𝑛−1𝑏𝑛−2 … 𝑏1𝑏0, there exist three common signed representations: sign-and-magnitude, 1’s 

complement, and 2’s complement. In these three representations, the MSB always tells us whether the number is positive 
(MSB=0) or negative (MSB=1). These representations allow us to represent both positive and negative numbers. 

 
SIGN-AND-MAGNITUDE (SM): 
 Here, the sign and the magnitude (value) are represented separately. The MSB only represents the sign and the remaining 

𝑛 − 1 bits the magnitude. 

 Example (n=4): 0110 = +6 1110 = -6 

 
1'S COMPLEMENT (1C): 
 Here, if the MSB=0, the number is positive and the remaining 𝑛 − 1 bits represent the magnitude. If the MSB=1, the number 

is negative and the remaining 𝑛 − 1 bits do not represent the magnitude. To invert the sign of a number in 1’s complement 

representation, we apply the 1’s complement operation to the number, which consists of inverting all the bits. 
 Let 𝐵 = 𝑏𝑛−1 … 𝑏1𝑏0 be a number represented in 1’s complement. Let 𝐾 = 𝑘𝑛−1 … 𝑘1𝑘0 represent – 𝐵. We get 𝐾 by 

applying the 1’s complement operation to 𝐵. 𝐾 is also called the 1’s complement of 𝐵 (and viceversa). 
 Definition: The 1’s complement of 𝐵 is defined as 𝐾 = (2𝑛 − 1) − 𝐵, 𝑛 = # 𝑜𝑓 𝑏𝑖𝑡𝑠 (𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑖𝑔𝑛 𝑏𝑖𝑡), where 𝐾 =

∑ 𝑘𝑖2𝑖𝑛−1
𝑖=0  and 𝐵 = ∑ 𝑏𝑖2𝑖𝑛−1

𝑖=0 . Note that 𝐾 and 𝐵 are treated as unsigned numbers in this formula. And (2𝑛 − 1) is the 

largest 𝑛-bit unsigned number. We can then show that the 1’s complement operation amounts to inverting all the bits:  

∑ 𝑘𝑖2𝑖

𝑛−1

𝑖=0

= (2𝑛 − 1) − ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

→ ∑(𝑘𝑖 + 𝑏𝑖)2𝑖

𝑛−1

𝑖=0

= 2𝑛 − 1 → 𝑘𝑖 + 𝑏𝑖 = 1, ∀𝑖  𝑘𝑖 = 𝑏�̅� 

Example: Given 𝐵 = 010012 = 9 in 1’s complement, get the 1’s complement representation of -9 using the formula:  
→ 𝐾 = (2𝑛 − 1) − 𝐵 = (25 − 1) − 9 = 22 = 101102. 

Recall that the formula treats 𝐾 and 𝐵 as unsigned integers. So, 𝐾 = 22 in unsigned representation, and 𝐾 = −9 in 1’s 

complement representation. 
It is much simpler to just invert each bit! 

 
 With 𝑛 bits, we can represent 2𝑛 − 1 numbers from −2𝑛−1 + 1 𝑡𝑜 2𝑛−1 − 1. When using the 1's complement representation, 

it is mandatory to specify how many bits we are using. 
  

 Examples: 

 +6=0110  -6=1001, +5=0101  -5=1010, +7=0111  -7=1000. 

 If -6=1001, we get +6 by applying the 1’s complement operation to 1001  +6 = 0110 

 Get the 1’s complement representation of 8: This is a positive number, thus the MSB=0. The remaining 𝑛 − 1 bits 

represent the magnitude. The magnitude is represented with a minimum number of 4 bits as 8=10002. Thus, using a 

minimum number of 5 bits, the number 8 in 1’s complement representation is 8=010002.  

 What is the decimal value of 1100? We first apply the 1’s complement operation to 1100, which results in 0011 (+3). 

Thus 1100=-3. 

 What is the 1’s complement representation of -4? We know that +4=0100. To get -4, we apply the 1’s complement 

operation to 0100, which results in 1011. Thus 1011=-4. 

 
2'S COMPLEMENT (2C): 
 Here, if the MSB=0, the remaining 𝑛 − 1 bits represent the magnitude. If the MSB=1, the number is negative and the 

remaining 𝑛 − 1 bits do not represent the magnitude. To invert the sign of a number in 2’s complement representation, we 

apply the 2’s complement operation to the number, which consists on inverting all the bits and add 1.  
 Let 𝐵 = 𝑏𝑛−1 … 𝑏1𝑏0 be a number represented in 2s complement. Let 𝐾 = 𝑘𝑛−1 … 𝑘1𝑘0 represent −𝐵. We get 𝐾 by applying 

the 2’s complement operation to 𝐵. 𝐾 is also called the 2’s complement of 𝐵 (and viceversa). 

 Definition: The 2’s complement of 𝐵 is defined as 𝐾 = (2𝑛 − 1) − 𝐵 + 1, 𝑛 = # 𝑜𝑓 𝑏𝑖𝑡𝑠 (𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑖𝑔𝑛 𝑏𝑖𝑡), where 𝐾 =
∑ 𝑘𝑖2𝑖𝑛−1

𝑖=0  and 𝐵 = ∑ 𝑏𝑖2𝑖𝑛−1
𝑖=0 . Note that 𝐾 and 𝐵 are treated as unsigned numbers in this formula. We can see that we 

can first get the term (2𝑛 − 1) − 𝐵 by inverting all the bits; then we add 1 to complete the equation. 

 
Example: Given = 010012 = 9 in 2’s complement, get the 2’s complement representation of -9 using the formula: 
→ 𝐾 = (2𝑛 − 1) − 𝐵 + 1 = (25 − 1) − 9 + 1 = 23 = 101112. 

Recall that the formula treats 𝐾 and 𝐵 as unsigned integers. So, 𝐾 = 23 in unsigned representation, and 𝐾 = −9 in 2’s 

complement representation. 
It is much simpler to just invert each bit (i.e., apply 1’s complement operation) and then add 1! 

 
 With 𝑛 bits, we can represent 2𝑛 numbers from −2𝑛−1 𝑡𝑜 2𝑛−1 − 1. When using the 2's complement representation, it is 

mandatory to specify how many bits we are using. 
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 Examples: 

 +6=0110  -6=1010, +5=0101  -5=1011, +7=0111  -7=1001. 

 If -6=1010, we get +6 by applying the 2’s complement operation to 1010  +6 = 0110 

 Represent 12 in 2’s complement: This is a positive number,  MSB=0. The remaining 𝑛 − 1 bits represent the magnitude. 

We can get the magnitude with a minimum 4 bits: 12=11002. Thus, using a minimum of 5 bits, the number 12 in 2’s 

complement representation is 12=011002.  

 What is the decimal value of 1101? We first apply the 2’s complement operation (or take the 2’s complement)  to 1101, 

which results in 0011(+3). Thus 1101=-3. 

 What is the 2’s complement representation of -4? We know that +4=0100. To get -4, we apply the 2’s complement 

operation to 0100, which results in 1100. Thus 1100=-4. 

 
Getting the decimal value of a number in 2's complement representation: 
 If the number 𝐵 is positive, then MSB=0: 𝑏𝑛−1 = 0.  

→ 𝐵 = ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

= 𝑏𝑛−12𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

= ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

  (𝑎) 

 If the number 𝐵 is negative, 𝑏𝑛−1 = 1 (MSB=1). If we take the 2’s complement of 𝐵, we get 𝐾 (which is a positive number). 

In 2’s complement representation, 𝐾 represents −𝐵. Using 𝐾 = 2𝑛 − 𝐵 (𝐾 and 𝐵 are treated as unsigned numbers): 

∑ 𝑘𝑖2𝑖

𝑛−1

𝑖=0

= 2𝑛 − ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

 

 We want a to express  – 𝐾 in terms of 𝑏𝑖, since the integer value – 𝐾 is the actual integer value of 𝐵. 

−𝐾 = − ∑ 𝑘𝑖2𝑖

𝑛−1

𝑖=0

= ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

− 2𝑛 = 𝑏𝑛−12𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

− 2𝑛 = 2𝑛−1(𝑏𝑛−1 − 2) + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

 

𝐵 = −𝐾 = 2𝑛−1(1 − 2) + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

= −2𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

 (𝑏) 

 Using (a) and (b), the formula for the decimal value of 𝐵 (either positive or negative) is: 

𝐵 = −𝑏𝑛−12𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

 

 Examples: 
101102 = −24 + 22 + 21 = −10  110002 = −24 + 23 = −8 

 

SUMMARY 
 The following table summarizes the signed representations for a 4-bit number: 

n=4: 

b3b2b1b0 

SIGNED REPRESENTATION 

Sign-and-magnitude 1’s complement 2’s complement 
0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

 0 

 1 

 2 

 3 

 4 

 5 

 6  

 7 

 0 

-1 

-2 

-3 

-4 

-5 

-6 

-7 

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

 0 

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

Range for 𝑛 bits: [−(2𝑛−1 − 1), 2𝑛−1 − 1] [−(2𝑛−1 − 1), 2𝑛−1 − 1] [−2𝑛−1, 2𝑛−1 − 1] 

 
 1C and 2C are representations of signed numbers. 1C and 2C represent both negative and positive numbers. Do not confuse 

the 1C and 2C representations with the 1C and 2C operations. 
 Note that the sign-and-magnitude and the 1’s complement representations have a redundant representation for zero. This 

is not the case in 2’s complement, which can represent an extra number. 

 In 2C, the number -8 can be represented with 4 bits: -8=1000. To obtain +8, we apply the 2C operation to 1000, which 

results in 1000. But 1000 cannot be a positive number. This means that we require 5 bits to represent +8=01000. 
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SIGN EXTENSION 

 UNSIGNED NUMBERS: Here, if we want to use more bits, we just append zeros to the left. 

Example: 12 = 11002 with 4 bits. If we want to use 6 bits, then 12 = 0011002. 

 
 SIGNED NUMBERS: 

 Sign-and-magnitude: The MSB only represents the sign. If we want to use more bits, we append zeros to the left. 
The leftmost bit is always the sign. 
Example: -12 = 111002 with 5 bits. If we want to use 7 bits, then -12 = 10011002. 

 
 2’s complement (also applies to 1’s complement): In many circumstances, we might want to represent numbers in 2's 

complement with a fixed number of bits. For example, the following two numbers require a minimum of 5 bits: 
101112 = −24 + 22 + 21 + 20 = −9  011112 = 23 + 22 + 21 + 20 = +15 

 
What if we wanted to use 8 bits to represent them? In 2’s complement, we need to sign-extend: If the number is positive, 
we append zeros to the left. If the number is negative, we attach ones to the left. In the example, note how we added 
three bits to the left in each case: 

111101112 = −24 + 22 + 21 + 20 = −9 000011112 = 23 + 22 + 21 + 20 = +15 

 

Demonstration of sign-extension in 2’s complement: 
 To increase the number of bits for representing a number, we append the MSB to the left as many times as needed: 

𝑏𝑛−1𝑏𝑛−2 … 𝑏0  𝑏𝑛−1 … 𝑏𝑛−1𝑏𝑛−1𝑏𝑛−2 … 𝑏0 

Examples: 001012 = 00001012 = 22 + 20 = 5 
  101012 = 11101012 = −24 + 22 + 20 = −26 + 25 + 24 + 22 + 20 = −11 

 
We can think of the sign-extended number as an 𝑚-bit number, where 𝑚 > 𝑛: 

𝑏𝑛−1 … 𝑏𝑛−1𝑏𝑛−1𝑏𝑛−2 … 𝑏0 = 𝑏𝑚−1 … 𝑏𝑛𝑏𝑛−1𝑏𝑛−2 … 𝑏0, where: 𝑏𝑖 = 𝑏𝑛−1, 𝑖 = 𝑛, 𝑛 + 1, … , 𝑚 − 1 

 
 We need to demonstrate that 𝑏𝑛−1𝑏𝑛−2 … 𝑏0 represents the same decimal number as  𝑏𝑛−1 … 𝑏𝑛−1𝑏𝑛−1𝑏𝑛−2 … 𝑏0, i.e., that the 

sign-extension is correct for any 𝑚 > 𝑛. 

We need that: 𝑏𝑚−1 … 𝑏𝑛𝑏𝑛−1𝑏𝑛−2 … 𝑏0 = 𝑏𝑛−1 … 𝑏𝑛−1𝑏𝑛−1𝑏𝑛−2 … 𝑏0 = 𝑏𝑛−1𝑏𝑛−2 … 𝑏0  
 
Using the formula for 2's complement numbers: 

−2𝑚−1𝑏𝑚−1 + ∑ 2𝑖𝑏𝑖

𝑚−2

𝑖=0

= −2𝑛−1𝑏𝑛−1 + ∑ 2𝑖𝑏𝑖

𝑛−2

𝑖=0

 

−2𝑚−1𝑏𝑚−1 + ∑ 2𝑖𝑏𝑖

𝑚−2

𝑖=𝑛−1

+ ∑ 2𝑖𝑏𝑖

𝑛−2

𝑖=0

= −2𝑛−1𝑏𝑛−1 + ∑ 2𝑖𝑏𝑖

𝑛−2

𝑖=0

  − 2𝑚−1𝑏𝑚−1 + ∑ 2𝑖𝑏𝑖

𝑚−2

𝑖=𝑛−1

= −2𝑛−1𝑏𝑛−1 

−2𝑚−1𝑏𝑛−1 + 𝑏𝑛−1 ∑ 2𝑖

𝑚−2

𝑖=𝑛−1

= −2𝑛−1𝑏𝑛−1, 

𝑅𝑒𝑐𝑎𝑙𝑙:   ∑ 𝑟𝑖

𝑙

𝑖=𝑘

=
𝑟𝑘 − 𝑟𝑙+1

1 − 𝑟
, 𝑟 ≠ 1 → ∑ 2𝑖

𝑙

𝑖=𝑘

=
2𝑘 − 2𝑙+1

1 − 2
= 2𝑙+1 − 2𝑘 

Then: 
−2𝑚−1𝑏𝑛−1 + 𝑏𝑛−1(2𝑚−1 − 2𝑛−1) = −2𝑛−1𝑏𝑛−1 
−2𝑚−1𝑏𝑛−1 + 2𝑚−1𝑏𝑛−1 − 2𝑛−1𝑏𝑛−1 = −2𝑛−1𝑏𝑛−1 ∴ −2𝑛−1𝑏𝑛−1 = −2𝑛−1𝑏𝑛−1 

 

SIGNED NUMBERS – ADDITION AND SUBTRACTION 

 We will use the 2’s complement representation for signed numbers. 

 The advantage of the 2’s complement representation is that the summation can be carried out using the same circuitry as 
that of the unsigned summation. Here the operands can either be positive or negative. 

 We show addition examples of 4-bit signed numbers. Note that the carry out bit does not necessarily indicate overflow. In 
some cases, the carry out must be ignored, otherwise the result is incorrect. 

 
  +5 = 0101 +

+2 = 0010

+7 = 0111  

cout=0

-5 = 1011 +

+2 = 0010

-3 = 1101 

cout=0

+5 = 0101 +

-2 = 1110

+3 =10011 

cout=1

-5 = 1011 +

-2 = 1110

-7 =11001 

cout=1



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-378: Computer Hardware Design  Winter 2016 

 

 

18 Instructor: Daniel Llamocca 

 Now, we show addition examples of two 8-bit signed numbers. The carry out c8 is not enough to determine overflow. Here, 
if c8≠c7 there is overflow. If c8=c7, no overflow and we can ignore c8. Thus, the overflow bit is equal to c8 XOR c7. 

 Note that overflow happens when the summation falls outside the 2’s complement range for 8 bits: [−27, 27 − 1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In general, for an n-bit number, overflow occurs when the summation falls outside the range [−2𝑛−1, 2𝑛−1 − 1]. The overflow 

bit can quickly be computed as 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 𝑐𝑛𝑐𝑛−1. Also, 𝑐𝑜𝑢𝑡 = 𝑐𝑛. 

 
DIGITAL CIRCUIT 
 The figure depicts a n-bit adder for 2’s complement numbers: 
 
 
 
 
 
 

 
 
 Subtraction: Note that 𝐴 − 𝐵 = 𝐴 + 2𝐶(𝐵). To subtract two numbers 

represented in 2’s complement arithmetic, we first apply the 2’s complement 
operation to B (the subtrahend), and then add the numbers. So, in 2’s 
complement arithmetic, subtraction is actually an addition of two numbers.  

 
 The digital circuit for 2’s complement subtraction is based on the adder. We 

account for the 2’s complement operation for the subtrahend by inverting 

every bit in the subtrahend and by making the cin bit equal to 1. 

 

 

 

 

 

 
 
 
 To avoid overflow when adding/subtracting, a common 

technique is to sign-extend the two summands. For example, 
for two 4-bits summands, we add an extra bit; so, we use 5 
bits to represent our numbers.  

 In general, if the two summands are 𝑛-bits wide, the result 

will have at most 𝑛 + 1 bits. 
 Recall that if there is no overflow in a summation result, the 

carry out bit must not be part of the result.  

+14  [-27, 27-1] -> no overflow

overflow = c8c7=1 -> overflow!

+170  [-27, 27-1] -> overflow!

+92 = 0 1 0 1 1 1 0 0 +

+78 = 0 1 0 0 1 1 1 0

+170 = 0 1 0 1 0 1 0 1 0
c 8

=0
c 7

=1
c 6

=0
c 5

=1
c 4

=1
c 3

=1
c 2

=0
c 1

=0
c 0

=0

overflow = c8c7=1 -> overflow!

-170  [-27, 27-1] -> overflow!

-92 = 1 0 1 0 0 1 0 0 +

-78 = 1 0 1 1 0 0 1 0

-170 = 1 0 1 0 1 0 1 1 0

c 8
=1

c 7
=0

c 6
=1

c 5
=0

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

overflow = c8c7=0 -> no overflow

+92 = 0 1 0 1 1 1 0 0 +

-78 = 1 0 1 1 0 0 1 0

+14 = 1 0 0 0 0 1 1 1 0

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

overflow = c8c7=0 -> no overflow

-92 = 1 0 1 0 0 1 0 0 +

+78 = 0 1 0 0 1 1 1 0

-14 = 0 1 1 1 1 0 0 1 0

c 8
=0

c 7
=0

c 6
=0

c 5
=0

c 4
=1

c 3
=1

c 2
=0

c 1
=0

c 0
=0

-14  [-27, 27-1] -> no overflow

cn-1
FA

x0 y0

c0

s0

FA

x1 y1

c1

s1

FA

x2 y2

c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...
cin

overflow

cout

+7 = 0 1 1 1 +

-3 = 1 1 0 1

+4 = 0 1 0 0  

cout = 1
overflow = 0

7 - 3 = 7 + (-3):

+3=0011  -3=1101

c 4
=1

c 3
=

1
c 2

=
1

c 1
=1

c 0
=

0

cn-1
FA

x0 y0

c0

s0

FA

x1 y1

c1

s1

FA

x2 y2

c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...
cin = 1

overflow

cout

...

+7 = 0 0 1 1 1 +

+2 = 0 0 0 1 0

+9 = 0 1 0 0 1  

-7 = 1 1 0 0 1 +

-2 = 1 1 1 1 0

-9 = 1 0 1 1 1 

c 5
=0

c 4
=0

c 3
=1

c 2
=1

c 1
=0

c 0
=0

c 5
=1

c 4
=1

c 3
=0

c 2
=0

c 1
=0

c 0
=0
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Adder/Subtractor Unit for 2's complement numbers: 

 We can combine the adder and subtractor in a single circuit if we are willing to give up the input cin. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

add/sub  yi

0     0

0     1

1     0

1     1

f

0

1

1

0

add/sub

yi

f

cn-1
FA

c0

s0

FA
c1

s1

FA
c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...
overflow

cout

...

x2 y2 x1 y1 x0 y0

add/sub

add = 0
sub = 1
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MULTIPLICATION OF INTEGER NUMBERS 
 

ARRAY MULTIPLIER FOR UNSIGNED NUMBERS 

 A straightforward implementation of the multiplication operation is depicted in the figure: at every diagonal of the circuit, 
we add up all terms in a column of the multiplication.  

 The figure shows the process and circuit for multiplying two unsigned numbers of 4 bits.  
 
  

b(3)

p(0)

p(1)

p(2)

p(3)

p(4)p(5)p(6)p(7)

b(2) b(1) b(0)

a(0)

a(1)

a(2)

a(3)

x y
cin

cout

s

a3    a2    a1    a0 x

b3    b2    b1    b0

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
a3b3 a2b3 a1b3 a0b3

p7    p6    p5   p4    p3    p2    p1    p0

a1b0

a0b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3

FULL

ADDER

m10m11m12m13

m00m01m02m03

m20m21m22m23

m30m31m32m33

s10s11s12

s20s21s22

s30s31s32

c02 c01 c00

c12 c11 c10

c22 c21 c20

c32 c31 c30

s13

s23

s33

s00s01s02s03

m40m41m42m43
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MULTIPLICATION OF SIGNED NUMBERS 

 A straightforward implementation consists of checking the sign of the multiplicand and multiplier. If one or both are negative, 
we change the sign by applying the 2’s complement operation. This way, we are left with unsigned multiplication. 

 As for the final output: if only one of the inputs was negative, then we modify the sign of the output. Otherwise, the result 
of the unsigned multiplication is the final output. 

 
 
 
 
 
 
 
 
 
 
 
 Note: If one of the inputs is −2𝑛−1, then the 2’s complement of it is 2𝑛−1, which requires 𝑛 + 1 bits. Here, we are allowed 

to use only 𝑛 bits; in other words, we do not have to change its sign. 

This will not affect the final result since if we were to use 𝑛 + 1 bits for 2𝑛−1, the MSB=0, which implies that the last row is 

full of zeros. 
 
 
 
 
 
 
 
 
 
 
 
 Final output: It requires 2𝑛 bits. Note that it is only because of the multiplication of −2𝑛−1 by −2𝑛−1 that we require those 

2𝑛 bits (in 2’s complement representation) 

 

 

  

0 0 1 x

0 1 0  

0 0 0  

0 1 1    

0 0 0      

0 0 0 1 1 0  

0 1 1 x

0 1 0  

0 0 0  

0 1 1    

0 0 0      

0 0 0 1 1 0  

1 1 1 x

1 1 0

1 0 1 x

0 1 0  

0 1 1 x

0 1 0  

0 0 0  

0 1 1    

0 0 0      

0 0 0 1 1 0  

1 1 1 0 1 0

0 1 0 x

0 1 0  

0 0 0  

0 1 0    

0 0 0      

0 0 0 1 0 0  

0 1 0 x

1 1 0

1 1 1 1 0 0

1 0 0 x

0 1 1  

1 0 0  

1 0 0    

0 0 0      

0 0 1 1 0 0  

1 0 0 x

0 1 1  

1 1 0 1 0 0

0 1 1 x

1 0 0  

0 0 0  

0 0 0    

0 1 1      

0 0 1 1 0 0  

0 1 1 x

1 0 0

1 1 0 1 0 0

1 0 0 x

1 0 0  

0 0 0  

0 0 0    

1 0 0      

0 1 0 0 0 0  

1 0 0 x

1 0 0
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BINARY CODES 
 We know that with 𝑛 bits, we can represent 2𝑛 numbers, from 0 𝑡𝑜 2𝑛 − 1. This is a commonly used range. However, with 

‘n’ bits, we can also represent 2𝑛 numbers in any range. 

 Moreover, with 𝑛 bits we can represent 2𝑛 different symbols. For example, in 24-bit color, each color is represented by 24 

bits, providing 224 distinct colors. Each color is said to have a binary code. 

 N = 5 symbols. With 2 bits, only 4 symbols can be represented. With 3 bits, 8 symbols can be represented. Thus, the number 
of bits required is 𝑛 = 3 = ⌈𝑙𝑜𝑔25⌉ = 𝑙𝑜𝑔28. Note that 8 is the power of 2 closest to N=5 that is greater than or equal to 5. 

 In general, if we have N symbols to represent, the number of bits required is given by ⌈log2 𝑁⌉. For example: 

 Minimum number of bits to represent 70,000 colors:  Number of bits: ⌈log2 70000⌉ = 17 𝑏𝑖𝑡𝑠. 

 Minimum number of bits to represent numbers between 15,000 and 19,096:  There are 19,096-15,000+1=4097. Then, 
number of bits: ⌈log2 4097⌉ = 13 𝑏𝑖𝑡𝑠. 

 
7-bit US-ASCII character-encoding scheme: Each character is represented by 7 bits. Thus, the number of characters that 
can be represented is given by 27 = 128. Each character is said to have a binary code. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Unicode: This code can represent more than 110,000 characters and attempts to cover all world’s scripts. A common character 
encoding is UTF-16, which uses 2 pair of 16-bit units: For most purposes, a 16 bit unit suffices (216 = 65536 characters): 

 (Greek theta symbol) = 03D1  (Greek capital letter Omega): 03A9  Ж (Cyrillic capital letter zhe): 0416 
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0 0 0 0
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0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0

0 - 22.5

22.5 - 45

45 - 67.5
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112.5 - 135

135 - 157.5
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315 - 337.5

337.5 - 360
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EMITTER
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g
3

g
2

g
1

g
0

BCD Code: 
 In this coding scheme, decimal numbers are represented in binary form by independently encoding 

each decimal digit in binary form. Each digit requires 4 bits. Note that only values from 0 are 9 
are represented here. 

 This is a very useful code for input devices (e.g.: keypad). But it is not a coding scheme suitable 
for arithmetic operations. Also, notice that the binary numbers 10112(10) to 11112(15) are not 

used. Only 10 out of 16 values are used to encode each decimal digit. 
 Examples: 

 Decimal number 47: This decimal number can be represented as a binary number: 1011112. 

In BCD format, this would be: 0100 01112  

 Decimal number 58: This decimal number can be represented as a binary number: 1110102. 

In BCD format, the binary representation would be: 010110002 
 The BCD code is not the same as the binary number!  

 
 There exist many other binary codes (e.g., reflective gray code, 6-3-1-1 code, 2-out-of-5 code) to represent decimal 

numbers. Usually, each of them is tailored to an specific application. 
 
REFLECTIVE GRAY CODE: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Application: Measuring angular position with 4-bit RGC. 4 beams are emitted along an axis. When a light beam passes 

(transparent spots, represented as whites), we get a logical 1, 0 otherwise. The RGC encoding makes that between areas 
only one bit changes, thereby reducing the possibility of an incorrect reading (especially when the beam between adjacent 
areas). For example: from 0001 to 0011 only one bit flips. If we used 0001 to 0010, two bits would flip: that would be 

prone to more errors, especially when the beams are close to the line where the two areas meet. 
  

0      0000

1      0001

2      0010

3      0011

4      0100

5      0101

6      0110

7      0111

8      1000

9      1001

BCD  decimal #

0 0

0 1

1 1

1 0

0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0

bn-1 bn-2 ... b1  b0

Decimal

Number b2b1b0

0

1

2

3

4

5

6

7

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

g2g1g0

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

g1g0 g3g2g1g0 bn-1 bn-2 ... b1  b0

gn-1 gn-2 ... g1  g0

gn-1 gn-2 ... g1  g0
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INTRODUCTION TO FIXED-POINT ARITHMETIC 

 We have been representing positive integer numbers. But what if we wanted to represent numbers with fractional parts? 

 Fixed-point arithmetic: Binary representation of positive decimal numbers with fractional parts. 
 

Given the following binary number:  
(𝑏𝑛−1𝑏𝑛−2 … 𝑏1𝑏0. 𝒃−𝟏𝒃−𝟐 … 𝒃−𝒌)2 

Formula to convert it to decimal: 

𝐷 = ∑ 𝑏𝑖 × 2𝑖

𝑛−1

𝑖=−𝑘

= 𝑏𝑛−1 × 2𝑛−1 + 𝑏𝑛−2 × 2𝑛−2 + ⋯ + 𝑏1 × 21 + 𝑏0 × 20 + 𝒃−𝟏 × 𝟐−𝟏 + 𝒃−𝟐 × 𝟐−𝟐 + ⋯ 𝒃−𝒌 × 𝟐−𝒌 

 
Conversion from binary to hexadecimal (or octal): (unsigned numbers) 

 
 
 
 
 
 
 
 
 
 
 
 Example: (unsigned number) 

1011.1012 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 + 1 × 𝟐−𝟏 + 𝟎 × 𝟐−𝟐 + 𝟏 × 𝟐−𝟑 = 11.625 

 
 Example: Now, what if we have a decimal number with fractional part? What we do is we divide the integer part and the 

fractional part. We obtain the binary representation of the integer part using what we know. As for the fractional part, what 
we do is successive multiplications by 2, the resulting integer parts resulting is the result. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Example (signed number): Convert -379.21875 to the 2’s complement representation. 

First, we get the binary representation of +379.21875, and then apply the 2’s complement operation to that result. 

 379 = 1011110112. In 2’s complement: 379 = 01011110112, 0.21875 = 0.001112. 

 Then: 379.21875 = 0101111011.001112. This is the 2’s complement representation of 379.21875.  

 Finally, we get -379.2185 by getting the 2’s complement of the previous result:  -379.21875 = 1010000100.110012= 

0xE84.C8 (to convert to hexadecimal, we append zeros to the LSB and sign-extend the MSB) 

0.625

Number in

base 10

Number in

base 2

????2

0.625x2 = 1.25 =  1 + 0.25

0.25x2 = 0.5  =  0 + 0.5

0.5x2 = 1    =  1 + 0

stop here!
0.1012

MSB

0.7

Number in

base 10

Number in

base 2

????2

0.7x2 = 1.4 =  1 + 0.4

0.4x2 = 0.8 =  0 + 0.8

0.8x2 = 1.6 =  1 + 0.6

0.6x2 = 1.2 =  1 + 0.2

0.4x2 = 0.8 =  0 + 0.8

0.2x2 = 0.4 =  0 + 0.4

0.10110 0110 ...2

MSB

Binary: 1101.112 001 101.110

1 5
octal:

6.

Binary: 10101.101012 0001 0101.1010 1000

1 5
hexadecimal:

A. 8


